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The physical aspects of the effective-adiabatic-exponent model making it possible to decompose the total prob-
lem on modeling of high-velocity gas flows into individual subproblems ("physicochemical processes" and
"aeromechanics"), which ensures the creation of a universal and efficient computer complex divided into a
number of independent units, have been analyzed. Shock-wave structures appearing at entry into the duct of a
hypersonic aircraft have been investigated based on this methodology, and the influence of the physical prop-
erties of the gas medium in a wide range of variations of the effective adiabatic exponent has been studied.

Introduction. The creation of new-generation high-speed aircraft and the beginning of their flights in the
upper troposphere going into near-earth orbits with altitudes of about 100 km call for a different approach to the com-
puter modeling of problems of aerodynamic. Whereas supersonic gas flow were studied earlier under the assumption
(model) that the physical properties of the gas medium are constant in all the flow zones under study, the extension
of modeling to the region of hypersonic velocities requires that this model be revised and the actual properties of the
gas, in particular the Earth’s atmosphere, with their change due to the occurrence of different physicochemical proc-
esses be allowed for.

Such a "complete" formulation of the problem leads to extremely high requirements imposed on computers,
which exceed their modern capabilities. Furthermore, the creation of universal algorithms and computer programs re-
quires that the total problem be decomposed into a number of subproblems: "aerodynamics," "physical processes," and
"chemical reactions" (see [1] for details). In addition to the efficiency of realization of such computational algorithms
on single-processor computers, the structurization of the problem makes it possible to carry out its "paralleling" and to
ensure the application of multiprocessor systems to the solution of various problems of gas dynamics (see [2]).

Physical Model. In the present work, we use the model of "effective adiabatic exponent" [5–7] to allow for
the physical processes in the gas medium (see [3, 4]). This method has successfully been used for modeling of a wide
range of problems of aerodynamics [8–11]. We briefly present and analyze its essence. The first basic proposition of
the model is that the "physics" of the problem is separated from "aeromechanics" in an algorithmical sense. The sec-
ond basic proposition is that the relation between these segments (subproblems) in a program system is carried out in
terms of a special quantity — an effective adiabatic exponent γeff which is a function of the pressure p ad the tem-
perature T, i.e., a quantity that varies throughout the flow region (in a program sense, a 2D or 3D array depending on
the dimension of the problem). It is precisely this that differentiates γeff from the "ordinary" adiabatic exponent γ, i.e.,
the quantity constant throughout the flow region (scalar in a program sense) and invariant with time. The third basic
proportion is that γeff is computed, in one manner or another, in accordance with the physics of the process (see [7]
with allowance for [3–5]) or is taken from certain tables (e.g., [12]) or electronic databases. Computation of γeff may
be carried out by the thermodynamic methods [5, 13]
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for a certain, not necessarily ideal, equation of state p = p(V, T). In particular, γeff = const (in this case γeff = γ by
definition) follows from (1) for the equation of state of an ideal and perfect gas p = RT/V after simple but cumber-
some transformations by the Jacobian technique with the use of the thermodynamic identity ∂(p, V)/∂(T, S) = 1.

In the context of an analysis of the physicochemical processes in a gas medium, it is more convenient to
compute γeff by the methods of statistical physics [13, 14] in terms of the classical adiabatic exponents γi of the gas
components (considered as being mutually independent) constituting the gas mixture and their concentrations αi in the
gas medium:

γeff (p, T) = ∑ 
i

αi γi ,   ∑ 

i

αi = 1 . (2)

We emphasize that by the components of the gas medium in (2) we mean not only the chemical constants  but also
the physical constants — atoms and molecules in different states. The adiabatic exponent of the ith component of the
gas medium with excitation level Fi is determined [6, 7] in terms of the number of excited degrees of freedom fin of
this component (with allowance for the statistical weight gin of this degree of freedom):

γi = 1 + 2 ⁄ Fi ,   Fi = ∑ 
n

gin fin . (3)

We give statistical weights for different degrees of freedom: g = 1 for translational and rotational degrees of
freedom and g = 2 for vibrational ones (since energy in them can exist in two forms: as potential or kinetic energy).
In the excitation of electron shells, the statistical weight of the state is equal to the number of electrons on the outer
shells of this component of the medium. In particular, for inert gas (argon and xenon) used as working media in aero-
dynamic experiments we have g = 8. Let us compute γi(p, T) for certain gases.

Monatomic Gases. Only three (by the number of possible coordinate directions of motion) translational de-
grees of freedom are excited at low temperatures; consequently, according to (3), we have n = 3, which yields Fi = 3
and γi = 5/3. Since all the three translational degrees of freedom of any component of any gas medium are invariably
excited (the case of the absolute thermodynamic zero of temperature is not considered), from (2), with allowance for
the homogeneity of the medium i = 1, we have γeff = 5/3 C 1.67 for the entire gas. This value is well known in clas-
sical aerodynamics. At high temperature, when the electron degrees of freedom are excited in addition to the transla-
tional ones, from (3) we have n = 4, gi1 = gi2 = gi3 = 1, gi4 = 8, and fi1 = fi2 = fi3 = fi4 = 1, from which Fi = 11
and γi = 11/9 C 1.18. The value of the effective adiabatic exponent γeff as a function of the temperature and the pres-
sure p of the gas medium will invariably lie in the interval 1.67–1.18. This temperature determines the level of exci-
tation of the electron shells of the gas α(p, T), and, according to (2), the adiabatic exponent of the medium will be
obtained from the formula

γeff = 1.18α + 1.67 (1 − α) . (4)

The value of α(p, T) may be determined from formulas of the Arrhenius or Saha type

α2

1 − α
 = A exp (− W ⁄ kT) , (5)

where W is the potential of excitation of the electron degrees of freedom and A is the preexponential factor, namely,
the constant in simple models or the density and/or temperature function in more complex models (see [3–7, 13, 14]
for greater detail).

We note that in experimental works [15, 16] in which high-temperature hypersonic flows have been investi-
gated, values of γ = 1.22 in [15] and γ = 1.25 in [16] were determined (on certain zones of flow, the temperature
exceeded 10,000 K).

Diatomic Gases. In connection with the important circumstance that diatomic gases — the oxygen O2 and the
nitrogen N2 — form the basis for the Earth’s atmosphere (20 and 78%), we should analyze the dependence γeff(p, T)

700



in detail. Only three translational degrees of freedom are excited, when T values are very low (near the absolute zero),
and γeff = 5/3, just as for a monatomic gas. The rotational degrees of freedom are excited for O2 and N2, when T
values are low (5 to 50 K depending on the specific value of p). Since O2 and N2 are linear molecules, there are only
two possible independent directions of the axes of rotation (two degrees of freedom). Then (3) yields Fi = 5 and γi =
7/5 = 1.4 for both O2 and N2. Next it follows from (2) that we have γeff = Σ(αi⋅1.4) = 1.4Σ ai = 1.4 for O2 and
N2 both taken separately and in a gas mixture (air) irrespective of the contractions of O2 and N2. This is a γ value
well known in classical aerodynamics.

Let us consider the change in γeff with increase in T, for example, for O2. A vibrational degree of freedom is
excited in an oxygen molecule, as T grows. Such the molecule is linear, and there is only one direction of vibrations
(along the straight line connecting atomic centers), i.e., only one degree of freedom (we recall that is statistical weight
is equal to 2; the terminology "vibrational degrees of freedom are half-excited" is sometimes used). Expressions (3)
yield a chain of values (three translational, two rotational, and one vibrational degree of freedom): Fi = 1⋅3 + 1⋅2 +
+ 2⋅1 = 7 and γeff = 9/7 C 1.28. The effective adiabatic exponent of the gas in (2) is determined by the level of ex-
citation of vibrations of the gas molecules α1(p, T). This value in turn is found from (5), where by W is meant the
potential of excitation of vibrations in O2. Next, we have the dissociation of O2 molecules into O atoms (γeff = 5/3
for a monatomic gas) with increase in T (in the range 2000–4000 K, as a function of p). The degree of a totally dis-
sociated gas α2(p, T) may also be determined from a formula of the  type (5), where by W is meant the dissociation
potential. Thus, the process of excitation of vibrations in O2 decreases, whereas the process of dissociation (disintegra-
tion of molecules O2 → O + O) increases the value of γeff:

γeff = 1.28α1 + 1.67α2 + 1.4 (1 − α1 − α2) . (6)

Next, as T increases, the process of excitation of the electron shells (first of the outer shell) of O atoms and
the remaining O2 molecules followed by the process of ionization proper (separation of electrons from the shell and
the formation of ions O → O+ + e) begins. The dependence γeff(p, T), on the whole, has a wave character with minima
(for the maximum excitation of vibrations in O2 molecules and for the maximum excitation of electron shells in O
atoms) and maxima (total dissociation of O2 into O and single, double, etc. ionization to form O+ an O++).

An analogous change in γeff(p, T) occurs for the nitrogen N2 but with other values of α1(p, T) and α2(p, T),
which leads to a shift of the minima and maxima of γeff(p, T) for N2 compared to O2. The course of the chemical
reactions to form new di- and triatomic compounds of the type of NO, NO2, etc. makes the pattern of the dependence
γeff(p, T) more complex.

The dependence γeff(p, T) for air is presented in Fig. 1 in parametric form (the parameter is the pressure p).
The data have been taken from [6, 7] with allowance for the tables of [12].

Fig. 1. Ratio γeff = cp
 ⁄ cv (for air) vs. temperature in variation of the pressure:

1) 0.001; 2) 1; 3) 1000 atm.
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Calculation of γeff(p, T) is a very difficult problem taking much computer time. This precisely is the reason,
as has already been discussed, why the optimum method of modeling hypersonic flows is the sedimentation of the
total problem into two subproblems: "physics" in which the physicochemical processes are modeled, and "aeromechan-
ics," in which one can model various gasdynamic problems with their interface, in particular, through the value of the
effective adiabatic exponent γeff(p, T), transferred from the segment "physics" to the segment "aeromechanics." The
values of the pressure p and the temperature T are transferred in the opposite direction.

Problem under Study. The effective-adiabatic-exponent model considered above was applied to approximate
allowance for the physicochemical processes exerting a substantial influence on the gasdynamic characteristics of the
elements of new-generation aircraft under development.

The present work primarily seeks to study the interaction of shock waves, for example, in the air intakes and
nozzles of hypersonic-aircraft engines, in wide ranges of flight regimes. For the hypersonic ramjet engine to operate in
the nominal regime it is necessary to create a system of correction of the entry of the flow into the diffuser. Such
systems are mechanical, as a rule, and provide a possibility of varying entrance angles. The idea of "thermal correc-
tion" of the diffuser [17], which assumes the supply of energy to the freestream in front of the diffuser, seems very
promising. However, it should be noted that such a correction (just as mechanical one) cannot assure the absence of
off-nominal regimes in all cases, much less in maneuvering of an aircraft. One off-nominal regime is that of incidence
of an oblique (skew) shock into the diffuser and of its reflection, which may cause the separation of the flow and the
formation of stagnation or recirculation zones of flow and its substantial inhomogeneity and may lead to high thermal
and force loads. Therefore, it is of prime importance to study such regimes for different altitudes of flight and flying
speeds and to predict the consequences of their occurrence.

For high-speed aircraft, the supply of an oxidizer (air) to the duct of a hypersonic ramjet engine with its pre-
compression is entirely, in fact, determined by the flying speed and the diffuser geometry which must ensure the sta-
bility and predictability of functioning in addition to the optimality of air intake. A system of oblique shocks
determining the structure of the gas flow in the duct is realized at entry into the diffuser of the hypersonic ramjet en-
gine. The development of methods of mathematical modeling due to modern computers has made it possible to study
spatial high-enthalpy gas flows to form complex shock-wave structures in the flow, including the case where we have
dualism of solution — the possibility of shock-wave patterns of reflection of two types: regular or Mach reflection
(Neumann paradox) existing for the same governing parameters. It becomes quite important to study the problems of
nonuniqueness and hysteresis of the resulting numerical solutions and to analyze their adequacy to actual physical
processes.

Investigations of the regular and Mach reflection of shock waves carried out at present enable us to draw cer-
tain conclusions on the domains of their existence, including the domains of existence of a dual solution, i.e., the pres-
ence of a number of subranges of variation in the governing parameters of the process, such as the Mach number of
the freestream, the angle of deflection of the flow, etc., for which stable patterns of both regular reflection and Mach
reflection may be formed. These two shock-wave structures occurring in reflection of a shock wave in steady-state
flows are shown diagrammatically in Fig. 2.

The regular-reflection pattern (Fig. 2a) formed in incidence of a supersonic flow with Mach number M0 on
two wedges with angles β1 and β2 includes respectively two oblique shocks i1 and i2 formed near the wedge surface
and falling into the flow region with angles of inclination ϕ1 and ϕ2 (here and in what follows the angles are deter-
mined in relation to the direction of the freestream vector) and two reflected shocks r1 and r2 with angles of inclina-
tion ϕ3 and ϕ4. These shocks intersect at point R. The wake S with an angle of inclination δ is formed in transmission
of the flow by a system of shocks with angles of deflection of the flow θ1, θ2, θ3, and θ4 on the shocks i1, i2, r1,
and r2 respectively. The relations θ1 = β1, θ2 = β2, and θ1 − θ3 = θ2 − θ4 = δ hold true for the stationary pattern. For
symmetric (β1 = β2) reflection, we have δ = 0.

When a wave structure with Mach reflection occurs (Fig. 2b), a central shock m whose curvilinear front links
two triple points of intersection of the shocks (i1, r1, m) and (i2, r2, m) appears in addition to the incident and re-
flected shocks, and two wakes S1 and S2 with angles of inclination δ1 and δ2 occur, too. The relations θ1 = β1, θ2 =
β2, θ1 − θ3 = δ1, and θ2 − θ4 = δ2 hold true for the stationary pattern. In the case of symmetry (β1 = β2) it is clear
that θ1 − θ2 and δ1 = δ2 = 0.
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The entire region of flow is subdivided into a number of zones (see Fig. 2), with the flow (homogeneous one,
in an idealized formulation) having its own characteristics in each zone. Zone 0, the region of undisturbed flow, is
bounded by any line placed in the region of a supersonic freestream (e.g., by the straight line linking the tops of the
wedges) on the left and by the fronts of the shocks i1 and i2 (and additionally by the front of the shock m for Mach
reflection) on the right. Zone 1, the region of flow turned (clockwise) to the shock i1 along the surface of the upper
wedge, is bounded by the fronts of the shocks i1 and r1 on the left and on the right respectively. Analogously zone
2, the region of flow turned (counterclockwise) to the shock i2 along the surface of the lower wedge, is bounded by
the fronts of the shocks i2 and r2 on the left and on the right respectively. Zone 3, the sector of flow turned (coun-
terclockwise) to the shock r1, is bounded by its front and the surface of contact discontinuity which is boundary of
the wake S (S1 for Mach reflection). Zone 4, the sector of flow turned (clockwise) to the shock r2, is bounded by its
front and the surface of contact discontinuity which is also a boundary of the wake S (S2 for Mach reflection). In the
case of regular reflection zones 3 and 4 shake the boundary (directly join together), whereas in the case of Mach re-
flection there are zones 5 and 6 between them, which are the regions of flow behind the front of the shock m.

The transitions between these two types of reflection are determined by he separation criterion and the Neu-
mann criterion. These criteria (bifurcation points) differentiate between three regions in which the existence just of
Mach reflection (in the first region), of both Mach reflection and regular reflection (in the second one), and just of
regular reflection (in the third region) is possible. The process of transition of these types of reflection with variation
of the parameters governing the physics of the problem, e.g., the flying speed and the flight altitude, may be accom-
panied by the phenomenon of hysteresis (also see [18] where it has been shown that the type of reflection of shocks
in an underexpanded wake is dependent on the prehistory of flow).

Because of the great theoretical and practical interest in this problem, a manyfold study of all its aspects is
carried out at present in analytical, computational, and experimental works whose detailed review is impossible here.
Thus, the dynamics of reflection of an oblique shock wave from the axis of symmetry is related to the Guderley sin-
gularity in [19]. In [20], a four-wave structure is considered in modeling the diffraction of weak shocks ad it is in-
ferred that the von Neumann paradox is only due to the insufficient resolving power of experimental measurements
and numerical algorithms. In [21], in the problem on reflection of weak shock waves, it is stated on the basis of a
certain analysis that a "very small portion of supersonic rarefaction flow" has been found behind the point of meeting
of the incident and reflected Mach shocks. The fundamental nonstationary of the process of von Neumann reflection
in incidence of a shock wave on a wedge to form a triple configuration is stated in [22]. Another group of works in-
vestigates the problem of nonuniqueness of "Mach and regular reflections" on the basis of a complex experimental and
computer modeling, including that with the use of high-resolution schemes [23, 24] (of high order of accuracy); tur-
bulence is allowed for in [25]. In investigating the diffraction of a strong shock wave on the surface with angles of

Fig. 2. Patterns of shock-wave structure in interaction of shocks: regular (a)
and Mach (b) reflections.
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inclination much smaller than critical ones, it has been found in [26] that the occurrence of Mach reflection is retarded
and we have the regime of a "forerunner" of regular reflection (which is, generally, inconsistent with the von Neu-
mann theory for a perfect gas). It is of considerable interest to study the nonuniqueness of numerical solutions with
variation of different physical and algorithmical parameters of the problem [27–29].

Wave structures of two types (regular reflection and Mach reflection) are investigated, as a rule, under the as-
sumption that the physical properties of a gas flow are constant in traversal of the entire system of shock waves, i.e.,
the model of an ideal polytropic gas with a constant value of the adiabatic exponent γ throughout the flow region is
used. However actual processes (see [30, 31] whose study involves intensified development of hypersonic aircraft
strongly call for the extension of this physical model. Since the problem diagrammatically shown in Fig. 2 models
flow at entry into the air intake of a hypersonic ramjet engine, the level of knowledge of the regimes of this flow, the
prediction of regular-to-Mach reflection transitions and, conversely, Mach-to-regular reflection transitions, and also the
answer to the question of which one of the two types of shock-wave structures is realized in the domain of
nonuniqueness of solution and what factors exert an influence on this, are extremely important in creating a system for
control of the regime of burning of a fuel for stable operating of the entire propulsion system.

The nonuniqueness of shock-wave structures formed at entry into the air intake of a hypersonic ramjet engine
has been investigated in [28–31] with allowance for the actual properties of the gas; the physical aspects of transition
of on type of interaction into another have been investigated in [30]. We emphasize that computer modeling was car-
ried out in [28–31] with allowance for the change in the properties of the gas medium on shock waves under the con-
ditions of the Earth’s atmosphere with a change in the adiabatic exponent of the gas from 1.2 to 1.4 as a function of
the specific p and T values determined by the altitude of flight, the flying speed, and the geometric parameters of the
diffuser (angles of downwash).

This work substantially extends the γ range under study. Here the modeling is carried out virtually throughout
the range of a possible variation in γeff from 1 to 5/3.

Needless to say, this, on the one hand (in the context of physics), cannot be directly referred to the problem
of motion of a body in a certain definite gas medium, since the adiabatic exponent can vary in such a wide range in
none of the gases. However, on the other hand, such a formulation is very useful from the mathematical viewpoint,
since it totally determines the degree of influence of γeff on the resulting solution through the permissible range of
variation.

In particular, we should point to the significant difference in the high-velocity motion of an aircraft in the at-
mosphere of the planets: the diatomic oxygen-nitrogen atmosphere of the Earth, the triatomic atmosphere of Mars, the
high-molecular-weight methane-hydrogen atmospheres of Jupiter and Saturn, etc. Therefore, a study of such a motion
(even in a model formulation) seems very useful, since it provides exhaustive information on all possible changes in
the shock-wave patterns in the gas flow.

Procedure of Investigation. The technique of shock polars is quite conveniently used for analysis of wave
occurring in interaction of the incident shock waves i1 and i2 and determined by the formation of reflected shock
waves r1 and r2 of different types (regular reflection and Mach reflection). We note that this technique is widely
used in solving problems of classical aerodynamics (under the assumption that the properties of the gas medium are
invariant) but some of its aspects have their distinctive features in the case of an abrupt change in these properties
on a shock wave (see [28]). By using the shock-polar technique, the complicated mathematical method of simultane-
ous mathematical method of simultaneous solution of a few nonlinear algebraic equations (their number is determined
by the number of interacting shock waves) relating the values of the parameters ahead of the front of each shock
and behind it may be replaced by a clear graphical method of obtaining the solution, when it is necessary to select
solutions (because of their nonuniqueness). This method makes the process itself of obtaining solutions and their
analysis much more clear and logical, and selection of the necessary solution (in the case of its nonuniqueness) is
much less troublesome.

By the polar of a shock wave, or simply the shock polar, we mean the relation relating the angle of deflec-
tion of the flow θ and the pressure ratio ξ = p+ ⁄ p−, where p+ and p− are respectively the pressure behind the shock
front and ahead of it, for the parametric dependence on the Mach number M0 and the effective adiabatic exponent
γeff; this relation is written in the form f(θ, ξ, M0, γeff) = 0. This plot in the plane (x, y) = (θ, ξ) represents a closed
curve which is called a shock polar. It is bounded by the values θmin ≤ θ ≤ θmax and εmin ≤ ξ ≤ ξmax and is mirror-
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symmetric about the straight line θs = 0.5 (θmin + θmax). The specific form an a detailed analysis of shock polars with
variation of the parameters have been given in [8, 28].

The shock-wave structures of the problem on question (Fig. 2) are determined by the parametric list F = (β1,
β2, M0, γeff). Different types of shock-wave structures may be formed with variation of the values of these parameters.
Isolation of one parameter, e.g., β2, which is selected as a "reference" one for investigation, is quite convenient for
analysis. In the space of permissible β2 values, there are two singular points β2

∗ = β2
∗(β1, M0, γeff) and β2

∗∗ = β2
∗∗(β1,

M0, γeff) called respectively the lower and upper (since β2
∗ < β2

∗∗) bifurcation points of the solution. These points deter-
mine the following ranges of shock-wave structures: only regular reflection is possible, if we have β2 < β2

∗, both regu-
lar reflection and Mach reflection are possible, if β2

∗ ≤ β2 ≤ β2
∗∗, only Mach reflection is possible, if β2 > β2

∗∗.
From the plots of the shock polars (see, e.g., Fig. 3), we may establish which of the shock-wave structures

is realized for a certain set of the parameters even without knowing the numerical values of β2
∗ and β2

∗∗. Let us
write these conditions analogous to those given above in the same order but in a different formulation: of the polars
r1 and r2 intersect inside the polar i1, Mach reflection is impossible, if the polars r1 and r2 intersect outside the
polar i1, both regular reflection and Mach reflection are possible; if the polars r1 and r2 do not intersect, regular re-
flection is impossible.

We note that, in addition to determination of the boundaries of regimes, the shock-polar technique makes it
possible to obtain the numeral characteristics of flows (see Fig. 2), such as the relative and absolute values of the
pressure and the angles of deflection of the flow on the fronts of all the shocks, from which we may subsequently
determine all the remaining gasdynamic parameters ad the angles of inclination of the shock waves throughout the
flow region.

Discussion of the Results. Let us consider the influence of the effective adiabatic exponent γeff on the forma-
tion of one shock-wave pattern of flow or another (Fig. 2). An analysis will be carried out with successive variation
of γeff from an almost minimum possible value of γeff to that maximum possible for the gas medium (order of the
plots from 3a to 4f). We note that the minimum γeff values correspond to high-molecular-weight gases with a strong
excitation of the vibrational degrees of freedom in their molecules. Thus, experiments with different working gases —
freons 12 and 14, ethane, etc. — with low values of γeff have been carried out in [15, 16]. Significant differences of
high-velocity (hypersonic) flows of such gases from the flow of "ordinary" air were found. The maximum γeff values

Fig. 3. Polars of two incident i1 (1) and i2 (2) and two reflected r1 (3) and
r2 (4) shock waves. For high-molecular-weight gases: γeff = 1.05 (a), 1.10 (b),
1.15 (c), 1.20 (d), 1.25 (e), and 1.35 (f).
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correspond, as has already been indicated above, to monatomic gases with unexcited or weakly excited electron shells
and to a mixture of mon- and diatomic gases with unexcited vibrational degrees of freedom.

We should additionally dwell on the range of variation of γeff, which has been selected as that under study in
the present work. The calculations were carried out for the ranges of variation in the effective adiabatic exponent γeff
1.05–1.534. Needless to say, this range is substantially wider than the range of applicability of a hypersonic ramjet en-
gine but it is of great interest and has been selected for investigation for the following two basic reasons. First, it is,
certainly, of prime importance to gain a global idea of the idea of investigations and to know what may occur beyond
the actual subrange of operation of the hypersonic ramjet engine in the near and (to a smaller degree) relatively distant
regions of the total range of variation of γeff. This knowledge is quite useful from both the practical (possible conse-
quences of moving out of the nominal operating regime of a hypersonic ramjet engine) and purely theoretical (how
wide the range of applicability of the model is) viewpoint. Furthermore, the results given below allow a certain degree
of interpolation and, with certain caution, extrapolation by the parameters. Second, this analytical work has an applied
continuation: a databank in which results of the mathematical modeling of this problem are placed is created on its
basis. The system for control of the databank calls for the "rectangularity" of data arrays, even through part of them
is of little interest. The use of modern computer technologies will ensure necessary results for any γeff values through
spline interpolation by the reference values in the databank without carrying out calculations.

Initial data. Computer modeling of the shock-wave structures shown in Fig. 2 was carried out for the follow-
ing values of the governing parameters: β1 = 40o, β2 = 15o, and M0 = 12. Selection of precisely these values for rep-
resentation of the results in the present work (the program complex ensures calculations with any physically meaning-
ful values) was determined by the following considerations.

The freestream Mach number equal to 12 belongs to the nominal range of the experiments carried out. Thus,
flight test of the hypersonic ramjet engine of an X-43 aircraft were carried out in late 2004 under the Hyper-X pro-
gram; the aircraft reached an altitude of 33 km and was accelerated to a speed of 3 km/sec by the Pegasus rocket
which in turn started onboard a B-52B airplane flying at an altitude of 12 km.

The diffuser angles equal to 40o and 15o were selected for the following "aeromechanical" reasons. An angle
of 40o is close to the limiting one for which a shock attached to the top of a wedge may exist and the shock-wave
structures shown in Fig. 2 may be formed. A small angle of 15o ensures (almost without exception) the regular type

Fig. 4. Polars of two incident i1 (1) and i2 (2) and two reflected r1 (3) and
r2 (4) shock waves. For low-molecular-weight gases: γeff = 1.35 (a), 1.40 (b),
1.45 (c), 1.50 (d), 1.53 (e), and 1.534 (f).
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of reflection. Thus, all the flow structures of practical interest are formed by the angles lying in this range. Analyzing
the shock polars in Figs. 3 and 4 enables us to approximately determine the flow structures for other values of β1 and
β2, mentally moving the r1 and r2 polars to the reference points of the i1 polar corresponding to these values. Need-
less to say, such a visual approximation will not ensure exact numbers but may provide a qualitative idea of the
change in the shock-wave flow structure with variation of β1 and β2.

Furthermore, there is also another reason for the selection of these precisely values of the angles β1 and β2.
Let a symmetric inlet of the diffuser of the hypersonic ramjet engine be designed. However, the symmetry of flow is
broken in motion of the aircraft on the portions of ascent or descent of its trajectory at the freestream angle of attack.
In particular, the problem presented may be considered as flow in a symmetric air intake with β1 = β2 = 27.5o at an
angle of attack of 12.5o.

Representation of the Results. As has already been noted above, the results will be analyzed with the use of
the shock-polar technique (also, see [8, 28, 30, 31]). The polars of shock waves (Fig. 2) — two waves incident (i1
and i2) onto the diffuser from the angles on entry into it and two reflected waves (r1 and r2) with different types of
interaction between them (Mach reflection and regular reflection) — are presented in Figs. 3 and 4 uniform in form.
The polars i1 and i2 coincide for this set of governing parameters. We recall that the polar r1 rests, with its zero point,
on the polar i1 at the point θ = β1 = 40o, whereas the polar r2 rests on the polar i2 at the point θ = −β2 = −15o.

Polar i1 (and i2). The dimensions of the polar are dependent on the value of γeff: the lower the value of
γeff, the larger (all other governing parameters being equal) the width θmax (more precisely, the halfwidth, but we will
use this term for the sake of brevity) and the height ξmax of the polar. For hypersonic flows M0 >> 1, we may write
the asymptotics

θmax = arctan 
1

√γeff
2  − 1

 ,   ξmax = 
2γeffM0

2

γeff + 1
 . (7)

The polar height ξmax is weakly dependent on γeff, since the coefficient 2γeff/(γeff + 1) in (7) changes in the
range of variation in γeff 8 [1, 5/3] only slightly: from 1 to 1.25. The polar width θmax is dependent on γeff very
strongly and changes from 70o for γeff = 1.05 (Fig. 3a) to 40o for γeff = 1.534 (Fig. 4f). This fact is quite significant.

Relative Dimensions of r-Polars. It is of interest to compare all the 12 variants of the results of solution of
the problem of this computational experiment; they are presented in Figs. 3 and 4. We may draw a few important con-
clusions from these plots. First, different degrees of influence of γeff on the solution are noteworthy. For low γeff val-
ues, the polar r1 is larger than the polar r2 in both width and height. We note that each individual r polar decreases
with growth in γeff (this has already been discussed in the previous section), but the rate of decreases in the r1 polar
is much higher than that of the r2 polar. Therefore, the polar r1 becomes comparable to the polar r2 already to a value
of γeff C 1.13 and continues to rapidly decrease further. The r1 polar disappears for a certain critical value of γeff
= γeff

∗  = 1.534. We note that the width θmax of the i1 polar becomes equal to 40o (and decreases further with increase
in γeff). Therefore, the relation θmax < β1 becomes true and the reference point of the r1 polar goes beyond the i1
polar. The disappearance of the polar r1 means that the shock wave i1 becomes, from the attached one, a wave de-
parted from the vertex of the angle β1. As a result, the existence of none of the shock-wave structures shown in Fig.
2 — neither the Mach wave nor the regular one — turns out to be possible. A different, more complex shock-wave
pattern must occur (this question is beyond the scope of the present work).

The dimension of the r2 polar do not change so strongly: ξmax decreases approximately from 1300 for γeff =
1.05 to 600 for γeff = 1.53. The swing of the r2 polar changes noticeably but not very substantially (compared to r1):
its halfwidth (θmax − θmin)/2 decreases from 68 to 36o.

Thus, numerical experiments in the cycle of variation of γeff have shown a high and very different degree of
influence of this exponent on the flow structure for different values of β1 and β2.

Domain of Nonuniqueness of the Solution. Point of Intersection of the (r1 × r2) Polars. An analysis of the re-
sults of numerical modeling (Figs. 3 and 4) in the context of determination of the type of  shock-wave structure oc-
curring (for a certain γeff) leads us to the following conclusions. The domain of nonuniqueness of the solution
(possibly, of both Mach reflection and regular reflection) for these values of β1, β2, and M0 is in the range γeff 8
[1.05, 1.35]. Here, the interval of γeff values used in the numerical experiment is given.
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Additional calculations have shown that when γeff → 1 we have dualism of the solution as before; only the
shapes of all the polars and their dimensions change. The polars i1 (and i2) are flattened and break in the limit
γeff → 1 and are represented by a straight line (see [8] for details). The width and height of the polars r1 and r2 in-
crease; the growth in the r1 polar is much more rapid than that in the polar r2. This could be predicted a priori, with-
out calculations, from the pattern of change in the r1 and r2 polars in Fig. 3.

The type of tangency of these polars (see Fig. 4a) is of great interest. Generally speaking, these are always
two points of intersection of the (r1 × r2) polars. The lower point corresponds to a weak solution, whereas the upper
one corresponds to a strong solution (see [28] for details). It is generally believed that only a weak solution is realized
in the case of dualism of the solution (see, e.g., the problem on incidence of a supersonic flow on a wedge or a
cone). However, this question remains open theoretically as before.

The following important circumstance is noteworthy (see Fig. 4a). The polar r1 is tangent to the polar r2 at
its upper part, i.e., at the subdomain of its "strong" shock-wave solutions. We recall that the polar written in the form
ξ = ξ(θ) is a two-valued function, i.e., two solutions exist for each θ 8 [θmin, θmax]: ξ1(θ) = ξ2(θ), where ξ1 < ξ2, ex-
cept for the points ξ1(θmin) = ξ2(θmin) and ξ1(θmax) = ξ2(θmax). The upper branch ξ2(θ) is called the strong solution,
whereas ξ1(θ) is called the weak solution. We emphasize that, despite the similarity of terminology, we should differ-
entiate between strong and weak "isolated" shock-wave solutions (upper and lower branches of individual polars) and
strong and weak solutions of the entire problem (upper and lower points of intersection of different polars). This prob-
lem has been analyzed in detail in [28] where, in particular, the question of nonuniqueness with a theoretical possibil-
ity of existence of 14 different solutions was considered.

Thus, the strong solution of the regular interaction of shock waves is realized at the instant of "contact" for
γeff = 1.35. Moreover, there is a very small interval of ∆γeff (from 1.348 to 1.352), in which both points of intersec-
tion simultaneously belong to the upper branch of the r1 polar and the lower branch of the r2 polar, i.e., we have two
shock-wave solutions, strong ones for the r1 polar and weak solutions for the r2 polar. Next, at γeff decreases, the situ-
ation becomes standardized: of the two points of intersection of the (r1 × r2) polars, the upper point is formed by in-
tersection of the upper branches, whereas the lower one is formed by intersection of the lower branches. However, the
presence of an actually existing ∆γeff interval, even if small, makes the meaning of the above-mentioned popular opin-
ion that "of the possible solutions, it is the weak one that is always realized" quite ambiguous.

Domain of Uniqueness of the Solution. Point of Intersection of the (i × r) Polars. Only one solution — a
Mach shock-wave configuration (see Fig. 2b) — may exist due to the nonintersectability of the polars r1 and r2 in the
range of variation of γeff > 1.35 in the case where the solution is existent at all.

Let us analyze the change in the shock-wave flow pattern with increase in γeff (Fig. 4). We consider two as-
pects of this question: decrease in the dimensions of the polar and change in the position of the points of intersection
of the (i1 × r1) and (i2 × r2) polars, paying special attention to the decrease in their number. The swing of the polars
is determined by the physics of the problem, i.e, by the value of γeff. The higher the γeff value, the smaller the width
and height of the polars. The height of the i polars ξmax remains virtually constant in this subrange of variation of
γeff 8 [1.35, 1.534], but the width θmax decreases from 62 to 40o. The quantity θmax(γeff) tending precisely to 40o has
a decisive effect, as has already been mentioned above, on the reformation of the flow pattern, since one angle of
entry into the air intake is β1 = 40o. This circumstance leads to a rapid decrease in the dimensions of the r1 polar, to
the point of its total disappearance: degeneration to a point for θmax(γeff) = β1. Once this criterion has been attained,
the existence of shock-wave flow patterns — either Mach reflection (Fig. 2b) or, especially, regular reflection (Fig. 2a)
— becomes impossible.

We consider the second aspect: change in the position of the points of intersection of the (i × r) polars, which
is substantially dependent on the values of the angles β1 and β2 determining the position of the reference points of the
r1 and r2 polars on the polars i1 and i2 respectively. In most of the range of variation of γeff under study and the val-
ues of other parameters, selected for numerical experiments there are only two points of intersection of the (i × r) po-
lars in each. The left (i1 × r1) and right (i2 × r2) points are called weak solutions, whereas the other two are called
strong solutions. The terminology has been derived from the fact that the absolute values of the abscissas (θ1

w and
θ2

w) for "weak" points are lower than those for "strong" points (θ1
st and θ2

st) for each pair of points of intersection of
the polars (i1 × r1) and each pair of (i2 × r2) points. These abscissas are the angles of direction of the flow θ3 and
θ4 (see Fig. 2) at exit from a system of shocks.
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There is an opinion (relying on aerophysical experiments) that if two solutions are theoretically possible, it is
the weak solution that is realized: θ3 = θ1

w and θ4 = θ2
w. In other words, the angle of convergence of the flow at exit

from the system of shocks ∆θ = θ3 − θ4 must be the minimum of the two possible angles. This angle plays a very
important role in the organization of the flow downstream in the air intake, in the engine’s duct. The system of shock
at entry (Fig. 2) compresses the flow, and the degree of this compression at exit flow it is characterized by an angle
∆θ in addition to p and T. Next, additional shocks turning flow along the duct channel, i.e., compensating for the in-
fluence of ∆θ may be formed in the flow.

We consider the behavior of the function ∆θ(γeff) in the interval γeff 8 [1.35, 1.53]. The components ∆θ of
the functions θ3(γeff) and θ4(γeff) change in significantly different manners. The second of them is nearly constant:
θ4(γeff) C 5o (changes from 4 to 6o). The first changes significantly: from 30o to 40o. On quite a long portion γeff 8
[1.05, 1.4], we have θ3(γeff) C 30o, i.e., the function is virtually constant. This corresponds to behavior of ∆θ(γeff), too:
this angle is nearly constant on the first interval given above (∆θ(γeff) C 25o) and sharply increases to 35o on the sec-
ond, much shorter interval γeff 8 [1.4, 1.53]. We note that, on the second interval, the question of selection between
the strong and weak intervals for determination of θ3 ceases to be pressing, since there is only one point of intersec-
tion of the (i1 × r1) polars for γeff > 1.35.

Domain of Absence of Solutions. When γeff > 1.534 the width of the polar i1 polar becomes smaller than
the angle of the upper wedge: θmax < β1. The meaning of this criterion is that no single shock transition is capable
of turning the flow by an angle larger than β1. What this means is that there can be no shock with a rectilinear
front attached tot he top of the wedge. A shock wave with a curvilinear front, departed from the wedge’s top, is
formed.

Thus, there can be no shock-wave patterns whose diagrams are presented in Fig. 2 with rectilinear fronts of
all shocks (except for the central shock in Mach interaction with the curvilinear front). What this means from the
viewpoint of physicochemical processes is that there are gas media in which such shock-wave regimes are possible and
impossible. They are allowed by high-molecular-weight gases and not allowed by monatomic or low-molecular-weight
gases. This should be taken into account in creating systems for control of hypersonic ramjet engines designed for op-
eration on gas media with a wide range of variation in their properties.

Conclusions. We have investigated shock-wave structures occurring at entry into the duct of the engine of a
hypersonic aircraft and the influence of the gas-medium parameters determining flow behind the fronts of oblique
shocks incident into the diffuser with different types of interaction (Mach or regular) on the process of formation of
these structures. To allow for the actual properties of the atmosphere we used the procedure of the effective adiabatic
exponent; this procedure makes it possible to determine the topology of shock-wave patterns and to calculate the gas-
and thermodynamic parameters in different zones of flow between the shock fronts in a wide range of governing pa-
rameters.

The authors expresses his thanks to S. N. Korobeinikov for useful discussions.
This work was carried out with financial support from the Russian Fund for Basic Research (project Nos. 04-

07-90002 and 05-01-00009).

NOTATION

cp, specific heat at constant pressure; cv, specific heat at constant volume; f, number of excited degrees of
freedom of one gas component; F, level of excitation of the gas medium; g, statistical weight; k, Boltzmann constant;
M, Mach number; p, pressure, atm; R, gas constant; T, temperature, K; V, specific volume; W, potential of the physi-
cal process; α, specific concentration of the component of the gas medium; β, angle of the wedge, deg; γ, adiabatic
exponent; δ, angle of the wake; ϕ, angle of inclination of the shock; ξ, ratio of the pressures behind the shock and
ahead of it; θ, angle of deflection of the flow; i, incident shock, m, central shock; r, reflected shock; S, wake. Sub-
scripts and superscripts: 0, 1, 2, 3, and 4, Nos. of flow zones; + (plus) and − (minus), parameters behind the shock
front and ahead of it; eff, effective value; i, component of the gas medium; max and min, maximum and minimum
values; s, mean value; st and w, strong and weak solutions.
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